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AN EFFICIENT ALGORITHM FOR COMPRESSIBLE
FLOWS WITH REAL GASES

P. GLAISTER
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SUMMARY

An efficient algorithm is presented for the solution of the Euler equations of gas dynamics with a general
convex equation of state. The scheme is based on solving linearized Riemann problems approximately, and in
more than one dimension incorporates operator splitting. In particular, only one function evaluation in each
computational cell is required by using a local parametrization of the equation of state. The scheme is applied
to two standard test problerns in gas dynamics for some specimen equations of state.
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1. INTRODUCTION

In 1988 Glaister proposed an approximate linearized Riemann solver for the Euler equations of
gas dynamics for non-ideal gases in one dimension.! Following this, he extended his scheme to
two dimensions in a generalized co-ordinate system, and hence to body-fitted co-ordinates.?
A disadvantage of Glaister’s scheme in both References 1 and 2 is that four function evaluations
are required in each computational cell to approximate the first derivatives of the equation of
state. For complex equations of state, e.g. curve fits for equilibrium air,® this can prove to be an
expensive overhead. We seek here to devise a scheme that requires only one function evaluation in
each cell with no deterioration in the quality of the solution. This is achieved by a local
parametrization of the equation of state, in effect a ‘variable effective gamma’ (VEG) scheme.

In Section 2 we consider the Jacobian matrix of the flux functions for the Euler equations with a
general equation of state, and in Section 3 we derive an approximate Riemann solver for the
solution of these equations. Finally, in Section 4 we display the numerical results achieved for two
standard test problems in gas dynamics.

2. EQUATIONS OF FLOW

In this section we state the equations of flow considered and give the eigenvalues and eigenvectors
of the Jacobian matrix of one of the corresponding flux functions. We discuss the two-dimensional
case for simplicity, but the extension to three dimensions is straightforward.

2.1. Equations of motion

The two-dimensional Euler equations for the flow of an inviscid compressible fluid can be
written in conservation form as

w,+f,+g,=0, 1
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where
w=(p, pu, pv, ', )
f=(pu, p+pu?, puv, u(e+p))', €]
g=(pv, pvu, p+ pv?, vle+p)), @
e=pi+ipu?+v?). )

The quantities (p, u, v, i, p, €} =(p, u, v, i, p, €)(x, y, t) represent the density, the velocity in the two co-
ordinate directions, the specific internal energy, the pressure and the total energy at a general
position (x, y) in space and at time ¢. In addition, we assume that there is a thermodynamic
relationship connecting p, p and i written as

p=p(p, i) (6)

We assume further that the derivatives p, = dp/dp|; and p,=dp/di|, of the equation of state (6) can
be determined.

2.2. Jacobian

The Jacobian matrix A =df/dw has eigenvalues

Ai=uta,uu, j=1,...,4 (7Ta-d)
with corresponding eigenvectors

e, ,=(l,uta v, p/p+i+iq*+ua), (8a, b)
e3=(L, u, v, 3¢ +i—pp,/p;), (8¢)
e,=(0,0,1, )7, (8d)

where the fluid speed g and sound speed a are given by
> =u*+v% )
a’=pp,/p*+p,. (10)

Similar expressions can be found for the Jacobian dg/dw.
In the next section we develop an approximate Riemann solver using the results of this section.

3. APPROXIMATE RIEMANN SOLVER

In this section we develop an approximate Riemann solver for the Euler equations in two
dimensions with a general convex equation of state incorporating the technique of operator
splitting.

We seek to solve equations (1)-(6) approximately using operator splitting, i.e. we solve
successively

w,+f,=0 (11a)
and
w,+g,=0 (11b)

along x- and y-co-ordinate lines respectively. We consider approximate solutions of equation
(11a); then a similar analysis will give approximate solutions of equations (11b).
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3.1. Parametrization of the equation of state
The equation of state for an ideal gas is given by
p=0@—1)pi (12)

where y is a constant and represents the ratio of specific heat capacities of the fluid. Following this,
for a general equation of state p=p(p, i) we define a new dependent variable y=y(p, i) by

y=p/pi+1, (13)
so that the equation of state (12) can be rewritten as
p=0(p, )—1pi. (14)

(Many equations of state for real gases are already given in the form of equation (14).) Thus
y=constant identifies an ideal gas.
From equation (13), the eigenvectors e; , of equations (8a,b) can be written in terms of y as

e,,=(1, uta, v, yp/y—1)p+3iq* tua)" (15a, b)
In particular, for the ideal equation of state (12), the sound speed a is given by equation (10) as
a*=yp/p, (16)

and the fourth component of e, given by equation (8c) becomes 3¢ since i — pp,/p;=0.

3.2. Wave speeds for nearby states

Following Godunov,* we consider the solution at any time to consist of a series of piecewise
constant states. Our aim is then to solve each of these linearized Riemann problems approxi-
mately. Consider two (constant) adjacent states w; , wy (left and right) close to an average state w,
at points L and R on an x-co-ordinate line. In particular, the variable y given by equation (13) is
piecewise constant. Now, in view of the sound speed a for ideal gases (y=constant) given by
equation (16) and the eigenvectors e, , given by equations (15a, b), we assume that we have
approximate eigenvectors

r .=, uta, v a@®f(y—1)+3u*+v?) +ua) (172, b)

corresponding to the average state w. (N.B. The quantity y in equations (17a, b) represents an
average value close to y; and yg.) In addition, because i — pp,/p; =0 for an ideal gas, we split e; into
two vectors as

r;=(1, u, v, 3@ +v?)" (18)
and

rs=(0, 0,0, B), (19)
where f§ represents an average value in the cell (x;, xg) of i — pp,/p;. Finally, we approximate e, as

r,=(,0,1, v (20)

We now seek coefficients a,, a5, a3 and «, such that
Aw=oa T, + 0,0 + 0l + ol +15 (21a-€)

to within O(A?), where A(*)=(*)g —(*).. (N.B. The vector rs is considered separately since it
vanishes for an ideal gas. Also, we do not introduce another coefficient o5 since r’s has only one
non-zero component and is therefore not required.)
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From equations (21a} and (21c) we obtain

a,=A(pv)—vAp, 22
but
A(pU)=pAU + UAp, U=uorv (23a, b)
to within O(A?), so that
o, = pAv. (24)

Also, from equations (21a, b) and (23a) we find that

a(o, — o) =pAu. (25)
Using equations (21a) and (24), (25) together with the relationships
A(pu?)=U2?Ap+2pUAU, U=uorv (26a, b)
to within O(A?), equation (21e) yields
. a? a?
A(pi)= =1 Ap—mdﬁﬁm- V)]
However, we also know that pi=p/(y —1); therefore
: p Ap p Ap pi
A(pi =A< > = - Ay = — A 28
e Vs ) e s A By R 9
to within O(A?), and thus equation (27) gives
Ap\ y-—1 pily
oc3—<Ap—a_2>= g <ﬂ+y_—1 . 29)

In the ideal case y=constant, so that Ay=0 and i—pp,/p;=0, i.e. B=0 for consistency and thus
a3=Ap—Ap/a®. In the general case we would like a;—Ap —Ap/a® as Ay—0, and thus we set

B=—pidy/(y—1) (30)
so that
a3 =Ap—Ap/a®. (31
Finally, equations (21a), (25) and (31) yield
1
%,2% 573 (Ap + paAu). (32a, b)

The results above imply an approximation to the eigenvector e, given by ry=r;+rs/u;, ie.

.A T
ry= <1, u, v, W+ vy — Ll )> ,

(y—1)(Ap—Ap/a?

and hence an approximation to i—pp,/p;.
We have found «;, o,, «; and a, such that

Aw= Y ar; (33)
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to within O(A?), and a routine calculation verifies that
a4
i=
to within O(A?). We are now in a position to construct the approximate Riemann solver.

3.3. Decomposition for general w;, wg

Consider the algebraic problem of finding average eigenvalues Il, )Tz, L and ).: and
corresponding average eigenvectors ¥,, ¥,, F; and T, such that relations (33) and (34) hold exactly

~~~~~

4
Aw= .Z] .j‘.j’ (35)
~
4 A~
i=1
where
AC)Y=(")—()s (37
w={(p, pu, pv, )7, (38)
f(w)=(pu, p+ pu?, puv, u(e+p))’ (39)
e=pi+4pu®+pv?, (40)
p=p(p, i), (41)
y=2 41, 42)
pl
Iy 234=0%4, 4,1, (43a—d)
i ,=(1, atd, b, @/F~ 1)+ 3@+ %)+ aa), (44a, b)
- Y 1sag o = piAy
F.=| 1, 4 8, 4@ +5%)— — — :l, (44¢)
? [ W+~ G 8y — Ap/a)
i-t:(o’ 0) 1, E)Tv (44d)
dy,2= 1.—2 (Ap * pdAu), (45a, b)
’ 2a
&y =Ap—Ap/a, (45¢)
Gy = pAv. (45d)

We note that the solution to this problem is equivalent to seeking an approximation to the
Jacobian A, namely A, with eigenvalues 4; and eigenvectors F;, such that

Af =AAw. (46)
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The first step in the analysis of the above problem is to write out equations (35) and (36)
explicitly, namely,

Ap=&1+&2+&3, (473.)
Alpw)=38,(li+a)+&,(d—a)+asi, (47b)
A(pv)=&, 0+ 0,0+ &0 +d,, 47¢c)
2
Ae=A.(pi+ 5"’—)
2
a2 2 -\ .g. PAY
=G, | —— +3§2+aa |+ 8, | —— +1§%—8a |+ 833G° — =— +d,D, (47d)
7—1 §—1 j—1
A(pu)=a,(fF+a)+d,(d—a)+ &34, (47¢)
A(p+ pw?)=Ap+A(pu®)=a, (@ +4)* +d,(i — a)* + 372, (471)
A(puv)=a&,(li+a)0+ &, (i — 30+ &, a0 + &, 4, (47g)

2
A(ule+ p))=A(upi+up)+A (p_uzli_)

a2 a2
=&1(ft+d)(y +%l§2+1'Id>+o~tz(t'i—d)(~ +34° —da

Ay + 8,47, (47h)
where

@ =u*+v* (48)
as before, and for convenience we have written

Gr=ua*+02 (49)

It

As in Reference 1 we find that
P \/pLuL+\/pRuR
PtV
p=+/(pLpw), 1)
and from equations (47a), (47¢) and (51) we obtain
< A(pv)—pAv \/vaL+\/pRUR
= = . (52)
Ap \/ pL+ \/ Pr

We have now determined p, i and 7, and in view of equations (50)—(52) we can show that
equation (47g) is automatically satisfied.
We are now left with equations (47d) and (47h), and noting the identity

(50)

A(pqg*/2)— 15 Ap — p(aAu +5Av) =0, (53)
equation (47d) yields
(5= DA(pi)+ pidy —Ap=0. (54)
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If we define averages § and i by

\/pLSL+\/pRSR

JPL'*" \/Pk R S=y or i, (55a, b)
we obtain the identities
A(pi)=pAi+iAp, (56)
= A(pity— 1)) =(9 = 1)pAi+()— 1)iAp +piAy, (57)
so that equation (54) yields
(G—9)iBp +(5—9)pAi+p(i—i) Ay =0. (58)
The only physical solution of equation (58) for all variations Ap, Ai and Ay is
§=7 and i=i, (59a, b)

given by equations (55a, b). It now remains to determine 4.
We begin by subtracting equation (47d) multiplied by i from equation (47h) to give

~2 o~

2 2
4 plAu=A(upi+up)—ﬁA(pi)—ﬁAp+A<u 5"2’—) —aA<”;’ ) 154 Au, (60)

which determines d. Simplifying equation (60) using the identities

AL/ puliv+py/pL) + \/pa(zk+pa/pg)]Au

A(u(pi+ p))—adA(pi+ 61)
(u(pi+p)) (pi+p)= NN/ (
upg®\ _ . (pa®\ _ F(/pi3al+/pedaR)Au
A £ ) —aa (2 , (62)
2 2 7/’1. +/Pr
we find that, after division by jAu,
& =F-1)H-1d) (63)
where H is a mean enthalpy given by
A= \/pLHL+\/pRHR (64)
N \7;k ’

YLRYPL®R)

0 4w+ et e = +34im)- (65)

H =
L PLRr) (?L(R) - 1)PL(R)

(N.B. If we explicitly write out equation (63), we obtain

\/prL/(leL) + \/pRpR/(pRlR) (\/I’L(PL/PL"’ i)+ \/PR(PR/PR +ip)
PL+ Pr \/pL +\/7R

\/(me[(un u)? + (o — v, ) J>
(\/bL‘f‘\/Px)

which ensures that a2 is positive for real data.)

By symmetry, similar results hold for the Jacobian dg/ow.

Summarizing, we can now apply the Riemann solver given above to the two-dimensional Euler
equations with a general convex equation of state using the technique of operator splitting. We




1276 P. GLAISTER

incorporate the results found here, together with the one-dimensional scalar upwind algorithm
given by Roe and Baines,® and perform a sequence of one-dimensional calculations along
computational grid lines in the x and y-directions in turn. The algorithm along a line y =constant
can be described as follows. Suppose at time level n we have data w, wy given at either end of the
cell (x,, xg) (on a line y = y,), then we update w to time level n+ 1 in an upwind manner. Thus we
At~ i 7
add - Ax Aj@;F; to wg if 4;>0
or

add -gz,.ajfj to wy if 2;<0,

where Ax = xg — x; , At is the time interval from level n to level n+1, and }‘:j, d;and F; are given by

11,2,3,4=ﬁi-'a', u

£

fl,Z
- pity )T
G—-1(Ap—Ap/a*))’

£,=(0,0, 1, )T,

. 1 an Ap
®1,2,3,4= ‘ZF(APiPaA“): Ap— 72 pAv,

~ ~ \/PL U+ \/ﬂk U
= , U=
p \/( PLPR) \/pL \/Pk

FP=0+0%, a=G-1)H-13>,

, U=u,v, i,y or H,

P(pLwys iLwy)
P = B g AC)=(Rr— (-
PL®ylL®R)

Similar results apply for updating in the y-direction.

The Riemann solver we have constructed in this section is a conservative algorithm (when
incorporated with operator splitting) and has the important one-dimensional shock-recognizing
property guaranteed by equations (35) and (36). Furthermore, the algorithm is efficient in the sense
that to accommodate a non-ideal gas requires an overhead of only a few per cent CPU time; in
particular, only one function evaluation of the equation of state is required in each computational
cell.

In the next section we give the numerical results achieved for two standard test problems in gas
dynamics using the scheme of this section.

4. NUMERICAL RESULTS

In this section we give the numerical results achieved for a one-dimensional test problem and a
two-dimensional test problem using the scheme of Section 3.

Problem 1

This test problem is concerned with shock reflection in one dimension of a gas governed by the
Euler equations with a general equation of state. We consider a region 0 <x <1 divided into 50
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equally spaced mesh points and the initial conditions (p, u, i, p)=(pe, — g, ig, P(Po, i)). This
represents a gas of constant density and pressure moving towards the origin x =0. The boundary
at x=0is a rigid wall and the exact solution describes shock reflection from the wall. The equation
of state chosen is that developed by R. K. Osborne at the Los Alamos Scientific Laboratory® and
can be written in the form

p=[/(E+¢o)1{{(as +a,11)+ [bo+{(by +by{)+Elco+¢, ()1},

where E=p,i, {=p/p,—1 and the constants p,, a,, a,, by, b;, b,, ¢, ¢, and ¢, depend on the
material in question. The particular case we choose corresponds to copper, where p, =89, the
remaining coefficients can be found in Reference 6 and we specify u,= 1. Three initial conditions
are chosen for i, corresponding to shock strengths p, /p, =100, 10 and 2, where p, denotes the
pressure behind the shock and p,=p(p,, i) denotes the pressure ahead of the shock. The results
for these three cases are given in Figures 1, 2 and 3, together with the exact solution when the
shock has moved a distance 0-3. We use the idea of flux limiters’ to create a second-order
algorithm which is oscillation-free, and we can modify the scheme to disperse entropy-violating
solutions.® The ‘superbee’ limiter is the one chosen here.”

Problem 2

This two-dimensional test problem is concerned with Mach 3 flow in a tunnel containing a step
and was originally introduced by Emery,® but has recently been reviewed by Woodward and
Colella.'® The tunnel is 3 units long and 1 unit wide. The step is 0-2 units high and is located 0-6
units from the left-hand end of the tunnel. At the left an inflow boundary condition is applied, and
at the right, where the exit velocity is supersonic, all gradients are assumed to vanish. The initial
conditions for the gas in the tunnel are given by ( p,, 4y, Vg, Po)=(1"4, 3, 0, 1) and hence i, from the
equation of state po=p(pg, ip)- Gas is continually fed in at the left-hand boundary with the flow
variables taking the initial values given above.

The equation of state chosen is one for equilibrium air given by Srinivasan et al.®> and can be
written as

p=@—pi,
where
j=9(p,)=a,+a, Y+asZ+a, YZ+asY*+agZ?

+a,Y?Z+agYZ? +a,Y? +a,,2°

+(a,;+a,, Y+a,3Z+a,,YZ+a,sY*+a,6Z%*+a,, Y?Z

+a,g YZ 4 a5 Y3 +a,0Z3)/[1 +elntanYtanZta,¥2)])
together with

Y=log,o(p/pr)s Z =log,o(ifig);

pr is a reference density and ig is a reference internal energy. The constants a;,i=1, . . ., 24, can be
found in Reference 3. Figures 4, 5, 6 and 7 display 31 equally spaced density contours at times
t=0-5,1-0, 1-5 and 4-0 respectively. The figures represent formation of the bow shock, reflection at
the upper wall, reflection at the lower wall and formation of the Mach stem respectively. A uniform
120 x 40 mesh was used together with the second-order scalar algorithm with the ‘superbee’
limiter.”

The algorithm described in Section 3 requires an overhead of only a few per cent over the ideal
gas scheme in order to allow for non-ideal gases. Any additional expense depends on the
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complexity of the equation of state; however, since only one function call is required in each
computational cell, this leads to an efficient algorithm.

The CPU time used to compute the results for Problem 1 with the ideal equation of state was as
follows. Using ‘superbee’ and 100 mesh points takes 00142 CPU s to compute one time step, and a
total of 1:6 CPU s to reach a real time of 0-9 s using 112 time steps. This compares favourably with
the original scheme,’ where a total of 2:0 CPU s was required to reach a real time of 0-9 s using 112
time steps. Furthermore, the satisfactory results found for Problems 1 and 2 show that no
deterioration in the quality of the solution is incurred at the expense of an increase in efficiency.

(N.B. For both problems we apply a reflection boundary condition at a rigid wall, i.c. we
consider an image cell and impose equal density, pressure and tangential velocity (for two-
dimensional problems), and equal and opposite normal velocity at either end of the cell.)

5. CONCLUSIONS

We have simplified the Riemann solver of Glaister! for the Euler equations with a general convex
equation of state by a local parametrization of the equation of state. In doing so we have reduced
the number of function calls to one per cell, but have retained the important shock-capturing
property. This results in an efficient algorithm that has produced satisfactory results for two
standard test problems in gas dynamics.
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