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A N  EFFICIENT ALGORITHM FOR COMPRESSIBLE 
FLOWS WITH REAL GASES 

P. GLAISTER 
Department of Mathematics, PO Box 220, University of Reading, Whiteknights, Reading RG6 2AX, U . K .  

SUMMARY 
An efficient algorithm is presented for the solution of the Euler equations of gas dynamics with a general 
convex equation of state. The scheme is based on solving linearized Riemann problems approximately, and in 
more than one dimension incorporates operator splitting. In particular, only one function evaluation in each 
computational cell is required by using a local parametrization of the equation of state. The scheme is applied 
to two standard test problems in gas dynamics for some specimen equations of state. 
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1. INTRODUCTION 

In 1988 Glaister proposed an approximate linearized Riemann solver for the Euler equations of 
gas dynamics for non-ideal gases in one dimension.’ Following this, he extended his scheme to 
two dimensions in a generalized co-ordinate system, and hence to body-fitted co-ordinates.2 
A disadvantage of Glaister’s scheme in both References 1 and 2 is that four function evaluations 
are required in each computational cell to approximate the first derivatives of the equation of 
state. For complex equations of state, e.g. curve fits for equilibrium air,3 this can prove to be an 
expensive overhead. We seek here to devise a scheme that requires only one function evaluation in 
each cell with no deterioration in the quality of the solution. This is achieved by a local 
parametrization of the equation of state, in effect a ‘variable effective gamma’ (VEG) scheme. 

In Section 2 we consider the Jacobian matrix of the flux functions for the Euler equations with a 
general equation of state, and in Section 3 we derive an approximate Riemann solver for the 
solution of these equations. Finally, in Section 4 we display the numerical results achieved for two 
standard test problems in gas dynamics. 

2. EQUATIONS O F  FLOW 

In this section we state the equations of flow considered and give the eigenvalues and eigenvectors 
of the Jacobian matrix of one of the corresponding flux functions. We discuss the two-dimensional 
case for simplicity, but the extension to three dimensions is straightforward. 

2.1. Equations of motion 

written in conservation form as 
The two-dimensional Euler equations for the flow of an inviscid compressible fluid can be 

(1) W,+f, + g, = 0, 
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where 

P. GLAISTER 

The quantities ( p ,  u, u, i, p ,  e) = ( p ,  u, u, i, p ,  e)(x, y, t )  represent the density, the velocity in the two co- 
ordinate directions, the specific internal energy, the pressure and the total energy at a general 
position (x, y) in space and at time t .  In addition, we assume that there is a thermodynamic 
relationship connecting p ,  p and i written as 

P = P ( P ,  i). (6 1 
We assume further that the derivatives pp = dp/dp I i  and p i  = dp/d i l ,  of the equation of state (6)  can 
be determined. 

2.2. Jacobian 

The Jacobian matrix A =  df/aw has eigenvalues 

with corresponding eigenvectors 

e1,2=(1, u+a ,  u, p / p + i + + q ’ + ~ u ) ~ ,  

e,=(1, u, u, t q 2 + i - P P p l P i ) ,  

e4 = (0, 0, 1, uIT, 

where the fluid speed q and sound speed a are given by 

q 2  = u2 + u2, (9) 

=Ppi/p2 + p p -  (10) 
Similar expressions can be found for the Jacobian dg/dw. 

In the next section we develop an approximate Riemann solver using the results of this section. 

3. APPROXIMATE RIEMANN SOLVER 

In this section we develop an approximate Riemann solver for the Euler equations in two 
dimensions with a general convex equation of state incorporating the technique of operator 
splitting. 

We seek to solve equations (1)-(6) approximately using operator splitting, i.e. we solve 
successively 

and 
w, + f, = 0 

w, + g, =o 
along x- and y-co-ordinate lines respectively. We consider approximate solutions of equation 
(1  la); then a similar analysis will give approximate solutions of equations (1 lb). 
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3.1. Parametrization of the equation of state 

The equation of state for an ideal gas is given by 

P = b -  ])Pi, (12) 
where y is a constant and represents the ratio of specific heat capacities of the fluid. Following this, 
for a general equation of state p = p (  p ,  i) we define a new dependent variable y = y(  p ,  i )  by 

Y =P/Pi+ 1, (13) 

p = ( y ( p ,  i)-l)Pi. (14) 

so that the equation of state (12) can be rewritten as 

(Many equations of state for real gases are already given in the form of equation (14)) Thus 
y E constant identifies an ideal gas. 

From equation (13), the eigenvectors el, of equations (Sa, b) can be written in terms of y as 

e l ,  = (1, u f a, u, yp/ (y  - 1)p + 34’ f ua)’. (15% b) 

a’ = YPIP,  (16) 

In particular, for the ideal equation of state (12), the sound speed a is given by equation (10) as 

and the fourth component of e3 given by equation (Sc) becomes 3q’ since i - p p , / p i = O .  

3.2. Wave speeds for nearby states 

Following Godunov: we consider the solution at any time to consist of a series of piecewise 
constant states. Our aim is then to solve each of these linearized Riemann problems approxi- 
mately. Consider two (constant) adjacent states wL, wR (left and right) close to an average state w, 
at points L and R on an x-co-ordinate line. In particular, the variable y given by equation (13) is 
piecewise constant. Now, in view of the sound speed a for ideal gases (y~constant) given by 
equation (16) and the eigenvectors el,’ given by equations (15a, b), we assume that we have 
approximate eigenvectors 

r l , z= ( l ,  ufa, u, aZ/(y- 1)++(u2+u2)+ua)T (17a, b) 

corresponding to the average state w. (N.B. The quantity y in equations (17a, b) represents an 
average value close to yL and yR.) In addition, because i- ppp/pi = 0 for an ideal gas, we split e3 into 
two vectors as 

and 

where p represents an average value in the cell (xL, xR) of i - ppp /p i .  Finally, we approximate e4 as 

r4=(0, 0, I, u)~. (20) 
We now seek coefficients a,, u z ,  u3 and u4 such that 

Aw = ulrl  + azr2 + u3rj + a4r4 + r; (21a-e) 

to within O(A2), where A ( * ) = ( * ) R - ( * ) L .  (N.B. The vector r; is considered separately since it 
vanishes for an ideal gas. Also, we do not introduce another coefficient u5 since r; has only one 
non-zero component and is therefore not required.) 
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From equations (21a) and (21c) we obtain 

but 

to within O(A2), so that 

a4 = ~ A u .  

Also, from equations (21a, b) and (23a) we find that 

a(al - a2) = pAu. 

Using equations (21a) and (24), (25) together with the relationships 

A(pu2)= U2Ap+2pUAU,  U = u  or u 

to within O(A2), equation (21e) yields 

a2 a’ 

Y-1 Y - 1  
A(pi)= P A P -  - ~ 3 + / ? a 4 .  

However, we also know that pi = p/(y - 1); therefore 

AP P i  
y-1 y-1 

- -A7 AP P A ( p i ) = A  (5) = y-l - ~ ( y -  1)2 Ay = - 

to within O(A2), and thus equation (27) gives 

In the ideal case y =constant, so that Ay = 0 and i -  ppp/pi = 0, i.e. B = 0 for consistency and thus 
a3 = Ap - Ap/a2. In the general case we would like a3-+Ap - Ap/a2 as Ay-0, and thus we set 

so that 
B= - P W ( Y  - 1) 

a3 = Ap - Ap/a2. 

Finally, equations (21a), (25) and (31) yield 

The results above imply an approximation to the eigenvector e3 given by r3 =r; +r;/a3, i.e. 

and hence an approximation to i - ppp/pi. 
We have found a t ,  a2,  a3 and a4 such that 

A 

Aw= C a j r j  
j =  1 

(33) 
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to within O(A2), and a routine calculation verifies that 

4 

j =  1 
A f =  AjaIrj 

1273 

(34) 

to within O(A2). We are now in a position to construct the approximate Riemann solver. 

3.3. Decomposition for general wL, w,, 

Consider the algebraic problem of finding average eigenvalues & ,  r,, & and & and 
corresponding average eigenvectors PI, P,, P3 and f4  such that relations (33) and (34) hold exacjly 
for arbitrary states wL, wR not necessarily close. Specifically, we seek averages p ,  u', 6, ri, 7 and i in 
terms of two adjacent states wL, wR (on an x-co-ordinate line) such that 

4 
Aw= C i i j P j ,  

j = 1  

where 

P 
Pl 

y =  --. +1, 

I 

4* , . , , 4=u ' fa ' ,  u', u', 

? I , ,  = (1, u' +a', 6, r i2 / (7  - 1) + $(a' + 0-2) & u'ri). 

P, = (0, 0, 1, 0-)T, 

1 
252 

cZl, , = -- (Ap f priAu), 

8, = Ap - Ap/a", 

8, = ~ A v .  

We note that the solution to this problem is equivalent to seeking an approximation to the 
Jacobian A, namely A, with eigenvalues 4 and eigenvectors Pi, such that 

Af = LAW. (46 ) 
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The first step in the analysis of the above problem is to write out equations (35) and (36) 
explicitly, namely, 

A p = & ,  + 8 2  + &3,  (474 

A(PU)=dl(u" + G) + &2(u"-G) + 6 3  6, (47b) 

A(p~)=&,v"+&~v"+&,v"+&,, (474 

A e = A ( p i +  $-) 

A(Pu)= E l  (u" + G)+ &2(u"-G) + d3i& 
A(p+ pu2)= Ap + A(pu2)=dl(u"+G)2 + &2(u"-ii)2 + B3u"', 

A( PUV)= 6 ,  (u" + G)v" + &2(u" - G)v" + &,iiv" + C4G, 

A(u(e+p))=A(upi+up)+A __ (""2") 

where 
42' u2 + u2 

4 2  =u"2 + f i 2  

as before, and for convenience we have written 

As in Reference 1 we find that 

(48) 

(49) 

and from equations (47a), (47c) and (51) we obtain 

We have now determined P, u" and v", and in view of equations (50)-(52) we can show that 

We are now left with equations (47d) and (47h), and noting the identity 
equation (47g) is automatically satisfied. 

A ( P ~ ~ / ~ ) - $ ~ ~ A P - ~ ~ ( ~ ~ A u + ~ " A v ) = O ,  (53) 
equation (47d) yields - 

(54) (7- 1 )  A( pi) + PiAy - Ap = 0. 
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If we define averages f and i'by 

we obtain the identities 

A( pi) = PAi + [Ap, (56) 

Ap=A(pi(y- l))=(f- l)PAi+(f- l)LAp+$Ay, (57) 
so that equation (54) yields 

(7 - f ) h p  + (7 - f)PAi + p(i"- t')Ay = 0. (58) 

7=f and i=i, (59a, b) 

The only physical solution of equation (58)  for all variations Ap, Ai and Ay is 
- 1  

given by equations (55a, b). It now remains to determine 6. 
We begin by subtracting equation (47d) multiplied by u" from equation (47h) to give 

:Au=A(upi+up)-u"A(pi)- i iAp+A (60) 
626 

Y - 1  
which determines d. Simplifying equation (60) using the identities 

we find that, after division by PAu, 
w 62=(7-1)(H-L"2 29 1, 

where €? is a mean enthalpy given by 

(N.B. If we explicitly write out equation (63), we obtain 

JpLPL/(PLiL) + JPRPR/(PRiR) h/pL(pL/pL+ iL)+ JPR(PR/PR + iR) ( JPL + JPR 
5 2  = 

PL + PR 

>. J(PLPR)[(UR - uL)2 + ('R - uL)21 + 
(JPL + JPR)' 

which ensures that ii2 is positive for real data.) 
By symmetry, similar results hold for the Jacobian ag/aw. 
Summarizing, we can now apply the Riemann solver given above to the two-dimensional Euler 

equations with a general convex equation of state using the technique of operator splitting. We 
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incorporate the results found here, together with the one-dimensional scalar upwind algorithm 
given by Roe and Ba ine~ ,~  and perform a sequence of one-dimensional calculations along 
computational grid lines in the x and y-directions in turn. The algorithm along a line y =constant 
can be described as follows. Suppose at time level n we have data wL, wR given at either end of the 
cell (xL, xR) (on a line y = yo)7 then we update w to time level n + 1 in an upwind manner. Thus we 

or 
At - - 
Ax "' add - -AI.&.?. to wL if A j < o ,  

I 

where Ax = xR - xL, At is the time interval from level n to level n + 1, and A j 7  Z j  and Z j  are given by - 
A 1 , 2 , ? , , 4 = 6 & &  % % 

f , , 2=(1 ,  6fd, 6, I?+iiii)T, 

- 
42=,2+62, i i2=(7-1) (H-L-2  2 4  1, 

+ 4 A(.)=(*)R-(*)L. 
P(PL(R), ~ L ( R ) )  

PL(R)~L(R) 
YL(R) = 

Similar results apply for updating in the y-direction. 
The Riemann solver we have constructed in this section is a conservative algorithm (when 

incorporated with operator splitting) and has the important one-dimensional shock-recognizing 
property guaranteed by equations (35) and (36). Furthermore, the algorithm is efficient in the sense 
that to accommodate a non-ideal gas requires an overhead of only a few per cent CPU time; in 
particular, only one function evaluation of the equation of state is required in each computational 
cell. 

In the next section we give the numerical results achieved for two standard test problems in gas 
dynamics using the scheme of this section. 

4. NUMERICAL RESULTS 

In this section we give the numerical results achieved for a one-dimensional test problem and a 
two-dimensional test problem using the scheme of Section 3. 

Problem 1 

This test problem is concerned with shock reflection in one dimension of a gas governed by the 
Euler equations with a general equation of state. We consider a region 01x5 1 divided into 50 
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equally spaced mesh points and the initial conditions ( p ,  u, i, p ) = ( p o ,  -uo,  i,, p ( p o ,  io)).  This 
represents a gas of constant density and pressure moving towards the origin x=O. The boundary 
at x = 0 is a rigid wall and the exact solution describes shock reflection from the wall. The equation 
of state chosen is that developed by R. K. Osborne at the Los Alamos Scientific Laboratory6 and 
can be written in the form 

P =  [ M E +  $011 { [ ( a ,  +a,lCl)+ Cb,+i(bl +b,C)+E(c, +ClC)I)., 

where E = p , i ,  C = p / p , - l  and the constants p,, a,, a,, b,, b,, b,, c,, C, and 4o depend on the 
material in question. The particular case we choose corresponds to copper, where po = 8.9, the 
remaining coefficients can be found in Reference 6 and we specify uo = 1. Three initial conditions 
are chosen for io corresponding to shock strengths p +  / p o  = 100, 10 and 2, where p +  denotes the 
pressure behind the shock and p o  = p ( p o ,  i,) denotes the pressure ahead of the shock. The results 
for these three cases are given in Figures 1, 2 and 3, together with the exact solution when the 
shock has moved a distance 0.3. We use the idea of flux limiters7 to create a second-order 
algorithm which is oscillation-free, and we can modify the scheme to disperse entropy-violating 
solutions.8 The 'superbee' limiter is the one chosen here.7 

Problem 2 

This two-dimensional test problem is concerned with Mach 3 flow in a tunnel containing a step 
and was priginally introduced by Emery,, but has recently been reviewed by Woodward and 
Colella." The tunnel is 3 units long and 1 unit wide. The step is 0-2 units high and is located 0.6 
units from the left-hand end of the tunnel. At the left an inflow boundary condition is applied, and 
at the right, where the exit velocity is supersonic, all gradients are assumed to vanish. The initial 
conditions for the gas in the tunnel are given by ( po,  u,, uo, p o ) = (  1*4,3,0, 1) and hence i, from the 
equation of state p ,  = p (  p,, i,). Gas is continually fed in at the left-hand boundary with the flow 
variables taking the initial values given above. 

The equation of state chosen is one for equilibrium air given by Srinivasan et aL3 and can be 
written as 

P=(Y-l)Pi,  
where 

y = y ( p ,  i)=a,+a, Y+a,Z+a, YZ+a, Y2+a,Z2 
+ a7 y2z + a, YZ, + a, y3 + a l O P  

+(a,,+al, Y+a,,Z+a,, YZ+a,, Y 2 + ~ , , Z 2 + ~ , ,  Y 2 Z  
+ a,, yz2 + a,, y 3 +a,,Z3)/[1 +ek+aZz Y+az,Z+oZ4 yzl I, 

together with 

y= log l o (  P/pR), = loglO(i/iR); 
pR is a reference density and iR is a reference internal energy. The constants ai, i= 1, . . . , 24, can be 
found in Reference 3. Figures 4, 5, 6 and 7 display 31 equally spaced density contours at times 
t = 05,1.0, 1.5 and 4.0 respectively. The figures represent formation of the bow shock, reflection at 
the upper wall, reflection at the lower wall and formation of the Mach stem respectively. A uniform 
120 x 40 mesh was used together with the second-order scalar algorithm with the 'superbee' 
limiter. 

The algorithm described in Section 3 requires an overhead of only a few per cent over the ideal 
gas scheme in order to allow for non-ideal gases. Any additional expense depends on the 
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complexity of the equation of state; however, since only one function call is required in each 
computational cell, this leads to an efficient algorithm. 

The CPU time used to compute the results for Problem 1 with the ideal equation of state was as 
follows. Using ‘superbee’ and 100 mesh points takes 0.0142 CPU s to compute one time step, and a 
total of 1.6 CPU s to reach a real time of 0.9 s using 112 time steps. This compares favourably with 
the original scheme,’ where a total of 2.0 CPU s was required to reach a real time of 0 9  s using 112 
time steps. Furthermore, the satisfactory results found for Problems 1 and 2 show that no 
deterioration in the quality of the solution is incurred at the expense of an increase in efficiency. 

(N.B. For both problems we apply a reflection boundary condition at a rigid wall, i.e. we 
consider an image cell and impose equal density, pressure and tangential velocity (for two- 
dimensional problems), and equal and opposite normal velocity at either end of the cell.) 

5. CONCLUSIONS 

We have simplified the Riemann solver of Glaister’ for the Euler equations with a general convex 
equation of state by a local parametrization of the equation of state. In doing so we have reduced 
the number of function calls to one per cell, but have retained the important shock-capturing 
property. This results in an efficient algorithm that has produced satisfactory results for two 
standard test problems in gas dynamics. 
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